MATH 2050C Lecture 17 (Mar16)

Reminder: PSF due today, PS8 due on Mar19.]Last week: limit of functions & sequential criteriaSetup: $f: A \subseteq iR \rightarrow iR$, C: a cluster pt. of A (Note: not nec.)<math>belong to A) $\forall E > 0, \exists S = S(E) > 0$ s.t. $Def^{!!}: lim f(x) = L <=>$ $x \rightarrow c$ |f(x) - L| < Eo < 1x - c < 1 < S

Sequentiel Criteria $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$ $\lim_{x \to c} f(x) = L \quad \langle z \rangle$

Remark: This is helpful, in particular, to show that the limit lim fix) DOES NOT EXIST. X+c Taking the negation of Sequential Criteria above, we get:

 $\underbrace{\operatorname{Cor} 1: \ f \ \text{DOES NOT}}_{\operatorname{Converge to} L} \left\{ \begin{array}{c} \exists \ seq. (x_n) \ \underline{in} \ A \ st \ \int x_n \neq c \ \forall n \in \mathbb{N} \\ lim (x_n) = c \\ as \ x \rightarrow c \end{array} \right\}$

 $\frac{\text{Cor 2}: f \text{ "DIVERGES"}}{\text{as } x \rightarrow C} \neq g \text{ seq. } (x_n) \text{ in } A \text{ s.t } \int x_n \neq c \quad \forall n \in \mathbb{N} \\ \text{lim } (x_n) = c \\ \text{But } (f(x_n)) \text{ is divergent} \\ \text{(converge to L } \forall L \in \mathbb{R} \\ \text{as } x \rightarrow c \end{pmatrix} = \frac{1}{2} \text{ But } (f(x_n)) \text{ is divergent} \\ \text{(converge to L } \forall L \in \mathbb{R} \\ \text{(converge to L \\ \text{(converg$

Proof of Cor. 2: "<=" Easy. "=>" Argue by Contradiction. Assume f diverges at x + c but the R.H.S. fails to hold. i.e. \forall seq. (X_n) in A st. $(n) \begin{cases} X_n \neq C & \forall n \in \mathbb{N} \\ lim(X_n) = C \end{cases}$ we have him (f(xn)) = L for some LER which may depend on the sequence (Xa) Claim: The limit L DOES NUT depend on (Xm). Pf of claim: Suppose (xn), (xn) satisfy (*), and $\lim_{x \to \infty} (f(x_{n})) = L \neq L' = \lim_{x \to \infty} (f(x_{n}))$ Consider the new sequence $(y_n) := (x_1, x_1', x_2, x_1', x_3, x_3', \dots)$ Satisfies (*), then by hypothesis <u>_</u> L $(f(y_{n})) := (f(x_{n}), f(x_{n}), f(x_{n}), f(x_{n}), \dots)$ is convergent, hence L=L' By sequential criteria, limfix = L contradiction: We now look at some examples where the limit of functions does not exist.

But (f (y.)) = (0, 1, 0, 1, 0, 1, ...) DIVERGENT!

f: A = R 1 [0] - 1R

 $f(x) = \sin \frac{1}{x}$

٩

Limit Theorems for functions (§ 4.2 in textbook)
(iff statust)
Motto: By Sequential Criteria, we get limit theorems
for functions from the corresponding limit theorems for sequences.
Recall: For sequences, (Xn) convergent
$$\Rightarrow$$
 (Xn) bdd
We have a similar result for functions.
Boundedness Thm:
Aver f(x) exists \Rightarrow f is bdd in a neighborhood of C
i.e. $\exists M > 0$ and $\exists \delta > 0$ st.
(Nds: (= net)) (f(x)) $\leq M$ \forall $|x-c| < \delta$
and $x \in A$
Remerk: f may not be bdd "globally".
F3.)
bdd
Finit: $f(x) = x = b$
 $f(x) = x = c$
Then $\exists \delta = S(1) > 0 \Rightarrow t |f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 bdd $d = f(x) - L| < \delta = 1$
 $bdd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = f(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$
 $bd = h(x) = h(x) = h(x) - L| < \delta = 1$

If we take
$$M := \max\{ \pm t | L|, |f(C)|\} > 0$$
, then
if $C \in A$
we have $|f(x)| \leq M \quad \forall x \in A \text{ st } |x-c| < g$

$$\frac{Def^2}{2}: \text{Given } f, g: A \rightarrow iR \quad \text{functions defined on the same } A,$$
then we can define new functions:
 $\cdot (f \pm g)(x) := f(x) \pm g(x) \quad f \pm g : A \rightarrow iR$
 $\cdot (fg)(x) := f(x) g(x) \quad fg: A \rightarrow iR$
 $\cdot (fg)(x) := f(x) g(x) \quad fg: A \rightarrow iR$
 $\cdot (fg)(x) := \frac{f(x)}{g(x)} \quad \frac{f}{2}: A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = A \cap [x \in A|g(x) = A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = A \cap [x \in A|g(x) = A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x \in A|g(x) = A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x \in G(x) + A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x \in A|g(x) = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow iR$
 $\frac{1}{2} = C \quad g(x) = A \cap [x = G(x) + A \cap [x = 0] \rightarrow$

Proof of (2): IDEA: Use seq criteria. Take (Xn) in A sit Xn \neq C \forall n \in N and lin(Xn) = C. Seq criterie \Rightarrow (f(Xn)) $\rightarrow linf(x) \land (g(Xn)) \rightarrow ling(x)$ Limit Thun \Rightarrow ($f(Xn) \cdot g(Xn)$) $\rightarrow linf(x) \cdot ling(x)$ for seq. Seq criteria \Rightarrow ($f(Xn) \cdot g(Xn)$) $\rightarrow linf(x) \cdot ling(x)$ x + cSeq criteria \Rightarrow ($f(Xn) \cdot g(Xn)$) $\rightarrow linf(x) \cdot ling(x)$ x + cSeq criteria \Rightarrow ($f(xn) \cdot g(xn)$) $\rightarrow linf(x) \cdot ling(x)$ x + cSeq criteria \Rightarrow ($f(x) + g(x) = linf(x) \cdot ling(x)$ x + c

۵